Monte Carlo Value Iteration for Continuous-State POMDPs

نویسندگان

  • Haoyu Bai
  • David Hsu
  • Wee Sun Lee
  • Ngo Anh Vien
چکیده

Partially observable Markov decision processes (POMDPs) have been successfully applied to various robot motion planning tasks under uncertainty. However, most existing POMDP algorithms assume a discrete state space, while the natural state space of a robot is often continuous. This paper presents Monte Carlo Value Iteration (MCVI) for continuous-state POMDPs. MCVI samples both a robot’s state space and the corresponding belief space, and avoids inefficient a priori discretization of the state space as a grid. Both theoretical results and preliminary experimental results indicate that MCVI is a promising new approach for robot motion planning under uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Continuous POMDPs: Value Iteration with Incremental Learning of an Efficient Space Representation

Discrete POMDPs of medium complexity can be approximately solved in reasonable time. However, most applications have a continuous and thus uncountably infinite state space. We propose the novel concept of learning a discrete representation of the continuous state space to solve the integrals in continuous POMDPs efficiently and generalize sparse calculations over the continuous space. The repre...

متن کامل

Monte Carlo Value Iteration with Macro-Actions

POMDP planning faces two major computational challenges: large state spaces and long planning horizons. The recently introduced Monte Carlo Value Iteration (MCVI) can tackle POMDPs with very large discrete state spaces or continuous state spaces, but its performance degrades when faced with long planning horizons. This paper presents Macro-MCVI, which extends MCVI by exploiting macro-actions fo...

متن کامل

Monte Carlo POMDPs

We present a Monte Carlo algorithm for learning to act in partially observable Markov decision processes (POMDPs) with real-valued state and action spaces. Our approach uses importance sampling for representing beliefs, and Monte Carlo approximation for belief propagation. A reinforcement learning algorithm, value iteration, is employed to learn value functions over belief states. Finally, a sa...

متن کامل

Unmanned Aircraft Collision Avoidance using Continuous-State POMDPs

An effective collision avoidance system for unmanned aircraft will enable them to fly in civil airspace and greatly expand their applications. One promising approach is to model aircraft collision avoidance as a partially observable Markov decision process (POMDP) and automatically generate the threat resolution logic for the collision avoidance system by solving the POMDP model. However, exist...

متن کامل

Point-Based Value Iteration for Continuous POMDPs

We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are restricted to discrete states, actions, and observations, but many real-world problems such as, for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demonstrate that the value fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010